
Abstract

In-memory key-value systems offer low latency access to non-persistent data. These systems

are typically used as a caching layer and thus generally process a high proportion of read

requests. The highly parallel architecture of GPUs is an ideal fit to accelerate high through-

put, read-heavy workloads. In this thesis, a hybrid CPU/GPU in-memory key-value system

is developed that can process up to 252.4 billion read requests per second. The system

utilizes the CUDA platform and is tested using an NVIDIA GTX 1080. The system design

takes advantage of optimizations such as latency hiding, CUDA kernel overlapping, pinned

memory transfers, and minimizing memory access instructions. All system optimizations

are implemented to improve read performance; however, some optimizations are found to

benefit both the read and write performance.

The optimizations are implemented incrementally upon an initial design. The impact

on performance is evaluated for each incremental change. The effects on performance from

different batch sizes, key sizes, word (value) sizes, load factors, client threads, and block sizes

is also evaluated.

ii


	Introduction
	CUDA
	CUDA GPU Architecture
	Programming Model
	Threads
	Heterogeneous Programming
	Memory Transfer

	Execution Model
	Basic Program Breakdown
	Memory Model and Access
	Memory Model Overview
	Device/Global Memory
	Local Memory
	Shared Memory
	Constant Memory
	Texture and Surface Memory

	Compute Capability 6.1
	L1 & L2 cache
	Global Memory
	Shared Memory


	Key-Value Databases
	Hash Tables
	In-memory KV database (IMKVs)

	Design
	Initial Design
	Measuring Performance
	Design Improvements

	Test Setup and Evaluation
	Results
	Batch Sizes
	Key Sizes
	Word Sizes
	Load Factor
	Threads
	Block Size
	Throughput Analysis

	Related Work
	Future Work
	Conclusion
	Hybrid IMKV Kernels
	Tabulated Results Data



